Subrings of ordered rings #
We study subrings of ordered rings and prove their basic properties.
Main definitions and results #
Subring.orderedSubtype: the inclusionS → Rof a subring as an ordered ring homomorphism- various ordered instances: a subring of an
OrderedRing,OrderedCommRing,LinearOrderedRing,toLinearOrderedCommRingis again an ordering ring
instance
SubringClass.toOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[OrderedRing R]
[SubringClass S R]
:
OrderedRing ↥s
A subring of an OrderedRing is an OrderedRing.
Equations
- SubringClass.toOrderedRing s = Function.Injective.orderedRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SubringClass.toOrderedCommRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[OrderedCommRing R]
[SubringClass S R]
:
A subring of an OrderedCommRing is an OrderedCommRing.
Equations
- SubringClass.toOrderedCommRing s = Function.Injective.orderedCommRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SubringClass.toLinearOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[LinearOrderedRing R]
[SubringClass S R]
:
A subring of a LinearOrderedRing is a LinearOrderedRing.
Equations
- SubringClass.toLinearOrderedRing s = Function.Injective.linearOrderedRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SubringClass.toLinearOrderedCommRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[LinearOrderedCommRing R]
[SubringClass S R]
:
A subring of a LinearOrderedCommRing is a LinearOrderedCommRing.
Equations
- SubringClass.toLinearOrderedCommRing s = Function.Injective.linearOrderedCommRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subring of an OrderedRing is an OrderedRing.
Equations
A subring of an OrderedCommRing is an OrderedCommRing.
Equations
A subring of a LinearOrderedRing is a LinearOrderedRing.
Equations
A subring of a LinearOrderedCommRing is a LinearOrderedCommRing.
The inclusion S → R of a subring, as an ordered ring homomorphism.
Equations
- Subring.orderedSubtype s = let __spread.0 := Subring.subtype s; { toRingHom := __spread.0, monotone' := ⋯ }