Ordered rings and semirings #
This file develops the basics of ordered (semi)rings.
Each typeclass here comprises
- an algebraic class (
Semiring,CommSemiring,Ring,CommRing) - an order class (
PartialOrder,LinearOrder) - assumptions on how both interact ((strict) monotonicity, canonicity)
For short,
- "
+respects≤" means "monotonicity of addition" - "
+respects<" means "strict monotonicity of addition" - "
*respects≤" means "monotonicity of multiplication by a nonnegative number". - "
*respects<" means "strict monotonicity of multiplication by a positive number".
Typeclasses #
OrderedSemiring: Semiring with a partial order such that+and*respect≤.StrictOrderedSemiring: Nontrivial semiring with a partial order such that+and*respects<.OrderedCommSemiring: Commutative semiring with a partial order such that+and*respect≤.StrictOrderedCommSemiring: Nontrivial commutative semiring with a partial order such that+and*respect<.OrderedRing: Ring with a partial order such that+respects≤and*respects<.OrderedCommRing: Commutative ring with a partial order such that+respects≤and*respects<.LinearOrderedSemiring: Nontrivial semiring with a linear order such that+respects≤and*respects<.LinearOrderedCommSemiring: Nontrivial commutative semiring with a linear order such that+respects≤and*respects<.LinearOrderedRing: Nontrivial ring with a linear order such that+respects≤and*respects<.LinearOrderedCommRing: Nontrivial commutative ring with a linear order such that+respects≤and*respects<.CanonicallyOrderedCommSemiring: Commutative semiring with a partial order such that+respects≤,*respects<, anda ≤ b ↔ ∃ c, b = a + c.
Hierarchy #
The hardest part of proving order lemmas might be to figure out the correct generality and its corresponding typeclass. Here's an attempt at demystifying it. For each typeclass, we list its immediate predecessors and what conditions are added to each of them.
OrderedSemiringOrderedAddCommMonoid& multiplication &*respects≤Semiring& partial order structure &+respects≤&*respects≤
StrictOrderedSemiringOrderedCancelAddCommMonoid& multiplication &*respects<& nontrivialityOrderedSemiring&+respects<&*respects<& nontriviality
OrderedCommSemiringOrderedSemiring& commutativity of multiplicationCommSemiring& partial order structure &+respects≤&*respects<
StrictOrderedCommSemiringStrictOrderedSemiring& commutativity of multiplicationOrderedCommSemiring&+respects<&*respects<& nontriviality
OrderedRingOrderedSemiring& additive inversesOrderedAddCommGroup& multiplication &*respects<Ring& partial order structure &+respects≤&*respects<
StrictOrderedRingStrictOrderedSemiring& additive inversesOrderedSemiring&+respects<&*respects<& nontriviality
OrderedCommRingOrderedRing& commutativity of multiplicationOrderedCommSemiring& additive inversesCommRing& partial order structure &+respects≤&*respects<
StrictOrderedCommRingStrictOrderedCommSemiring& additive inversesStrictOrderedRing& commutativity of multiplicationOrderedCommRing&+respects<&*respects<& nontriviality
LinearOrderedSemiringStrictOrderedSemiring& totality of the orderLinearOrderedAddCommMonoid& multiplication & nontriviality &*respects<
LinearOrderedCommSemiringStrictOrderedCommSemiring& totality of the orderLinearOrderedSemiring& commutativity of multiplication
LinearOrderedRingStrictOrderedRing& totality of the orderLinearOrderedSemiring& additive inversesLinearOrderedAddCommGroup& multiplication &*respects<Ring&IsDomain& linear order structure
LinearOrderedCommRingStrictOrderedCommRing& totality of the orderLinearOrderedRing& commutativity of multiplicationLinearOrderedCommSemiring& additive inversesCommRing&IsDomain& linear order structure
Note that OrderDual does not satisfy any of the ordered ring typeclasses due to the
zero_le_one field.
An OrderedSemiring is a semiring with a partial order such that addition is monotone and
multiplication by a nonnegative number is monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- zero_le_one : 0 ≤ 1
0 ≤ 1in any ordered semiring. In an ordered semiring, we can multiply an inequality
a ≤ bon the left by a non-negative element0 ≤ cto obtainc * a ≤ c * b.In an ordered semiring, we can multiply an inequality
a ≤ bon the right by a non-negative element0 ≤ cto obtaina * c ≤ b * c.
Instances
An OrderedCommSemiring is a commutative semiring with a partial order such that addition is
monotone and multiplication by a nonnegative number is monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- zero_le_one : 0 ≤ 1
Multiplication is commutative in a commutative multiplicative magma.
Instances
An OrderedRing is a ring with a partial order such that addition is monotone and
multiplication by a nonnegative number is monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
Addition is monotone in an ordered additive commutative group.
- zero_le_one : 0 ≤ 1
0 ≤ 1in any ordered ring. The product of non-negative elements is non-negative.
Instances
An OrderedCommRing is a commutative ring with a partial order such that addition is monotone
and multiplication by a nonnegative number is monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- zero_le_one : 0 ≤ 1
Multiplication is commutative in a commutative multiplicative magma.
Instances
A StrictOrderedSemiring is a nontrivial semiring with a partial order such that addition is
strictly monotone and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
In a strict ordered semiring,
0 ≤ 1. Left multiplication by a positive element is strictly monotone.
Right multiplication by a positive element is strictly monotone.
Instances
A StrictOrderedCommSemiring is a commutative semiring with a partial order such that
addition is strictly monotone and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
Multiplication is commutative in a commutative multiplicative magma.
Instances
A StrictOrderedRing is a ring with a partial order such that addition is strictly monotone
and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
Addition is monotone in an ordered additive commutative group.
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
In a strict ordered ring,
0 ≤ 1. The product of two positive elements is positive.
Instances
A StrictOrderedCommRing is a commutative ring with a partial order such that addition is
strictly monotone and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
Multiplication is commutative in a commutative multiplicative magma.
Instances
A LinearOrderedSemiring is a nontrivial semiring with a linear order such that
addition is monotone and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
A linear order is total.
- decidableLE : DecidableRel fun (x x_1 : α) => x ≤ x_1
In a linearly ordered type, we assume the order relations are all decidable.
- decidableEq : DecidableEq α
In a linearly ordered type, we assume the order relations are all decidable.
- decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
In a linearly ordered type, we assume the order relations are all decidable.
The minimum function is equivalent to the one you get from
minOfLe.The minimum function is equivalent to the one you get from
maxOfLe.- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
Comparison via
compareis equal to the canonical comparison given decidable<and=.
Instances
A LinearOrderedCommSemiring is a nontrivial commutative semiring with a linear order such
that addition is monotone and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
A linear order is total.
- decidableLE : DecidableRel fun (x x_1 : α) => x ≤ x_1
In a linearly ordered type, we assume the order relations are all decidable.
- decidableEq : DecidableEq α
In a linearly ordered type, we assume the order relations are all decidable.
- decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
In a linearly ordered type, we assume the order relations are all decidable.
The minimum function is equivalent to the one you get from
minOfLe.The minimum function is equivalent to the one you get from
maxOfLe.- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
Comparison via
compareis equal to the canonical comparison given decidable<and=.
Instances
A LinearOrderedRing is a ring with a linear order such that addition is monotone and
multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
A linear order is total.
- decidableLE : DecidableRel fun (x x_1 : α) => x ≤ x_1
In a linearly ordered type, we assume the order relations are all decidable.
- decidableEq : DecidableEq α
In a linearly ordered type, we assume the order relations are all decidable.
- decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
In a linearly ordered type, we assume the order relations are all decidable.
The minimum function is equivalent to the one you get from
minOfLe.The minimum function is equivalent to the one you get from
maxOfLe.- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
Comparison via
compareis equal to the canonical comparison given decidable<and=.
Instances
A LinearOrderedCommRing is a commutative ring with a linear order such that addition is
monotone and multiplication by a positive number is strictly monotone.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun (x x_1 : α) => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
Multiplication is commutative in a commutative multiplicative magma.
Instances
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Alias of one_lt_mul_of_le_of_lt.
Variant of mul_le_of_le_one_left for b non-positive instead of non-negative.
Variant of le_mul_of_one_le_left for b non-positive instead of non-negative.
Variant of mul_le_of_le_one_right for a non-positive instead of non-negative.
Variant of le_mul_of_one_le_right for a non-positive instead of non-negative.
Equations
- OrderedRing.toOrderedSemiring = let __src := inst; let __src_1 := Ring.toSemiring; OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
Equations
- OrderedCommRing.toOrderedCommSemiring = let __src := OrderedRing.toOrderedSemiring; let __src_1 := inst; OrderedCommSemiring.mk ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
A choice-free version of StrictOrderedSemiring.toOrderedSemiring to avoid using choice in
basic Nat lemmas.
Equations
- StrictOrderedSemiring.toOrderedSemiring' = let __src := inst✝; OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
Instances For
Equations
- StrictOrderedSemiring.toOrderedSemiring = let __src := inst; OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
Equations
- ⋯ = ⋯
Variant of mul_lt_of_lt_one_left for b negative instead of positive.
Variant of lt_mul_of_one_lt_left for b negative instead of positive.
Variant of mul_lt_of_lt_one_right for a negative instead of positive.
Variant of lt_mul_of_lt_one_right for a negative instead of positive.
Binary rearrangement inequality.
Binary rearrangement inequality.
Binary strict rearrangement inequality.
Binary rearrangement inequality.
A choice-free version of StrictOrderedCommSemiring.toOrderedCommSemiring' to avoid using
choice in basic Nat lemmas.
Equations
- StrictOrderedCommSemiring.toOrderedCommSemiring' = let __src := inst✝; let __src_1 := StrictOrderedSemiring.toOrderedSemiring'; OrderedCommSemiring.mk ⋯
Instances For
Equations
- StrictOrderedCommSemiring.toOrderedCommSemiring = let __src := inst; let __src_1 := StrictOrderedSemiring.toOrderedSemiring; OrderedCommSemiring.mk ⋯
Equations
- StrictOrderedRing.toStrictOrderedSemiring = let __src := inst; let __src_1 := Ring.toSemiring; StrictOrderedSemiring.mk ⋯ ⋯ ⋯ ⋯ ⋯
A choice-free version of StrictOrderedRing.toOrderedRing to avoid using choice in basic
Int lemmas.
Equations
- StrictOrderedRing.toOrderedRing' = let __src := inst✝; let __src_1 := Ring.toSemiring; OrderedRing.mk ⋯ ⋯ ⋯
Instances For
Equations
- StrictOrderedRing.toOrderedRing = let __spread.0 := inst; OrderedRing.mk ⋯ ⋯ ⋯
A choice-free version of StrictOrderedCommRing.toOrderedCommRing to avoid using
choice in basic Int lemmas.
Equations
- StrictOrderedCommRing.toOrderedCommRing' = let __src := inst✝; let __src_1 := StrictOrderedRing.toOrderedRing'; OrderedCommRing.mk ⋯
Instances For
Equations
- StrictOrderedCommRing.toStrictOrderedCommSemiring = let __src := inst; let __src_1 := StrictOrderedRing.toStrictOrderedSemiring; StrictOrderedCommSemiring.mk ⋯
Equations
- StrictOrderedCommRing.toOrderedCommRing = let __src := inst; let __src_1 := StrictOrderedRing.toOrderedRing; OrderedCommRing.mk ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Out of three elements of a LinearOrderedRing, two must have the same sign.
The sum of two squares is zero iff both elements are zero.
Equations
- One or more equations did not get rendered due to their size.
Binary arithmetic mean-geometric mean inequality (aka AM-GM inequality) for linearly ordered commutative semirings.
Alias of two_mul_le_add_sq.
Binary arithmetic mean-geometric mean inequality (aka AM-GM inequality) for linearly ordered commutative semirings.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- LinearOrderedCommRing.toStrictOrderedCommRing = StrictOrderedCommRing.mk ⋯
Equations
- One or more equations did not get rendered due to their size.
Deprecated lemmas #
Those lemmas have been deprecated on 2023/12/23
Alias of mul_nonneg_iff_of_pos_left.
Alias of mul_nonneg_iff_of_pos_right.
Alias of mul_pos_iff_of_pos_left.
Alias of mul_pos_iff_of_pos_right.