Fractional ideals of number fields #
Prove some results on the fractional ideals of number fields.
Main definitions and results #
NumberField.basisOfFractionalIdeal: Aℚ-basis ofKthat spansIoverℤwhereIis a fractional ideal of a number fieldK.NumberField.det_basisOfFractionalIdeal_eq_absNorm: forIa fractional ideal of a number fieldK, the absolute value of the determinant of the base change fromintegralBasistobasisOfFractionalIdeal Iis equal to the norm ofI.
instance
NumberField.instFreeIntSubtypeMemSubmoduleSubalgebraToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocCommSemiringToNonUnitalNonAssocCommRingToNonUnitalCommRingToModuleToAlgebraToCommSemiringToSemifieldIdSetLikeCoeToSubmoduleNonZeroDivisorsToMonoidWithZeroToSemiringInstSemiringIntAddCommMonoidIntModuleAddCommGroupToRingToAddCommGroup
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)
:
Module.Free ℤ ↥↑I
Equations
- ⋯ = ⋯
instance
NumberField.instFiniteIntSubtypeMemSubmoduleSubalgebraToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocCommSemiringToNonUnitalNonAssocCommRingToNonUnitalCommRingToModuleToAlgebraToCommSemiringToSemifieldIdSetLikeCoeToSubmoduleNonZeroDivisorsToMonoidWithZeroToSemiringInstSemiringIntAddCommMonoidIntModuleAddCommGroupToRingToAddCommGroup
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)
:
Module.Finite ℤ ↥↑I
Equations
- ⋯ = ⋯
instance
NumberField.instIsLocalizedModuleIntInstCommSemiringIntNonZeroDivisorsToMonoidWithZeroInstSemiringIntSubtypeMemSubmoduleSubalgebraToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocCommSemiringToNonUnitalNonAssocCommRingToNonUnitalCommRingToModuleToAlgebraToCommSemiringToSemifieldIdSetLikeCoeToSubmoduleNonZeroDivisorsToMonoidWithZeroToSemiringValFractionalIdealToMonoidToSemiringToDivisionSemiringSemifieldIsDomainToIsDomainIsDedekindDomainIsDomainTo_principal_ideal_domainInstIsDedekindDomainSubtypeMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingInstIsFractionRingSubtypeMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAlgebraToCommSemiringToSemifieldIdAddCommMonoidIntModuleAddCommGroupToRingToAddCommGroupRestrictScalarsModuleIntModuleSubtype
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
IsLocalizedModule (nonZeroDivisors ℤ) (↑ℤ (Submodule.subtype ↑↑I))
Equations
- ⋯ = ⋯
noncomputable def
NumberField.fractionalIdealBasis
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)
:
Basis (Module.Free.ChooseBasisIndex ℤ ↥↑I) ℤ ↥↑I
A ℤ-basis of a fractional ideal.
Equations
Instances For
noncomputable def
NumberField.basisOfFractionalIdeal
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
Basis (Module.Free.ChooseBasisIndex ℤ ↥↑↑I) ℚ K
A ℚ-basis of K that spans I over ℤ, see mem_span_basisOfFractionalIdeal below.
Equations
Instances For
theorem
NumberField.basisOfFractionalIdeal_apply
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
(i : Module.Free.ChooseBasisIndex ℤ ↥↑↑I)
:
(NumberField.basisOfFractionalIdeal K I) i = ↑((NumberField.fractionalIdealBasis K ↑I) i)
theorem
NumberField.mem_span_basisOfFractionalIdeal
(K : Type u_1)
[Field K]
[NumberField K]
{I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ}
{x : K}
:
x ∈ Submodule.span ℤ (Set.range ⇑(NumberField.basisOfFractionalIdeal K I)) ↔ x ∈ ↑↑I
theorem
NumberField.fractionalIdeal_rank
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
theorem
NumberField.det_basisOfFractionalIdeal_eq_absNorm
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
(e : Module.Free.ChooseBasisIndex ℤ ↥(NumberField.ringOfIntegers K) ≃ Module.Free.ChooseBasisIndex ℤ ↥↑↑I)
:
|(Basis.det (NumberField.integralBasis K)) ⇑(Basis.reindex (NumberField.basisOfFractionalIdeal K I) e.symm)| = FractionalIdeal.absNorm ↑I
The absolute value of the determinant of the base change from integralBasis to
basisOfFractionalIdeal I is equal to the norm of I.