Convergence of L-series #
We define LSeries.abscissaOfAbsConv f (as an EReal) to be the infimum
of all real numbers x such that the L-series of f converges for complex arguments with
real part x and provide some results about it.
Tags #
L-series, abscissa of convergence
The abscissa x : EReal of absolute convergence of the L-series associated to f:
the series converges absolutely at s when re s > x and does not converge absolutely
when re s < x.
Equations
- LSeries.abscissaOfAbsConv f = sInf (Real.toEReal '' {x : ℝ | LSeriesSummable f ↑x})
Instances For
theorem
LSeriesSummable_of_abscissaOfAbsConv_lt_re
{f : ℕ → ℂ}
{s : ℂ}
(hs : LSeries.abscissaOfAbsConv f < ↑s.re)
 :
LSeriesSummable f s
theorem
LSeriesSummable_lt_re_of_abscissaOfAbsConv_lt_re
{f : ℕ → ℂ}
{s : ℂ}
(hs : LSeries.abscissaOfAbsConv f < ↑s.re)
 :
∃ x < s.re, LSeriesSummable f ↑x
theorem
LSeriesSummable.abscissaOfAbsConv_le
{f : ℕ → ℂ}
{s : ℂ}
(h : LSeriesSummable f s)
 :
LSeries.abscissaOfAbsConv f ≤ ↑s.re
theorem
LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable
{f : ℕ → ℂ}
{x : ℝ}
(h : ∀ (y : ℝ), x < y → LSeriesSummable f ↑y)
 :
theorem
LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable'
{f : ℕ → ℂ}
{x : EReal}
(h : ∀ (y : ℝ), x < ↑y → LSeriesSummable f ↑y)
 :
If f is O(1), then the abscissa of absolute convergence of f is bounded above by 1.