Ringed spaces #
We introduce the category of ringed spaces, as an alias for SheafedSpace CommRingCat.
The facts collected in this file are typically stated for locally ringed spaces, but never actually
make use of the locality of stalks. See for instance
@[inline, reducible]
The type of Ringed spaces, as an abbreviation for SheafedSpace CommRingCat.
Instances For
Equations
- AlgebraicGeometry.RingedSpace.instCoeSortRingedSpaceType = { coe := fun (X : AlgebraicGeometry.RingedSpace) => ↑↑X.toPresheafedSpace }
theorem
AlgebraicGeometry.RingedSpace.isUnit_res_of_isUnit_germ
(X : AlgebraicGeometry.RingedSpace)
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
(f : ↑(X.presheaf.obj (Opposite.op U)))
(x : ↥U)
(h : IsUnit ((TopCat.Presheaf.germ X.presheaf x) f))
:
∃ (V : TopologicalSpace.Opens ↑↑X.toPresheafedSpace) (i : V ⟶ U) (_ : ↑x ∈ V), IsUnit ((X.presheaf.map i.op) f)
If the germ of a section f is a unit in the stalk at x, then f must be a unit on some small
neighborhood around x.
theorem
AlgebraicGeometry.RingedSpace.isUnit_of_isUnit_germ
(X : AlgebraicGeometry.RingedSpace)
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
(f : ↑(X.presheaf.obj (Opposite.op U)))
(h : ∀ (x : ↥U), IsUnit ((TopCat.Presheaf.germ X.presheaf x) f))
:
IsUnit f
If a section f is a unit in each stalk, f must be a unit.
def
AlgebraicGeometry.RingedSpace.basicOpen
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.obj (Opposite.op U)))
:
TopologicalSpace.Opens ↑↑X.toPresheafedSpace
The basic open of a section f is the set of all points x, such that the germ of f at
x is a unit.
Equations
- AlgebraicGeometry.RingedSpace.basicOpen X f = { carrier := Subtype.val '' {x : ↥U | IsUnit ((TopCat.Presheaf.germ X.presheaf x) f)}, is_open' := ⋯ }
Instances For
@[simp]
theorem
AlgebraicGeometry.RingedSpace.mem_basicOpen
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.obj (Opposite.op U)))
(x : ↥U)
:
↑x ∈ AlgebraicGeometry.RingedSpace.basicOpen X f ↔ IsUnit ((TopCat.Presheaf.germ X.presheaf x) f)
@[simp]
theorem
AlgebraicGeometry.RingedSpace.mem_top_basicOpen
(X : AlgebraicGeometry.RingedSpace)
(f : ↑(X.presheaf.obj (Opposite.op ⊤)))
(x : ↑↑X.toPresheafedSpace)
:
x ∈ AlgebraicGeometry.RingedSpace.basicOpen X f ↔ IsUnit ((TopCat.Presheaf.germ X.presheaf { val := x, property := ⋯ }) f)
theorem
AlgebraicGeometry.RingedSpace.basicOpen_le
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.obj (Opposite.op U)))
:
theorem
AlgebraicGeometry.RingedSpace.isUnit_res_basicOpen
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.obj (Opposite.op U)))
:
IsUnit ((X.presheaf.map (CategoryTheory.homOfLE ⋯).op) f)
The restriction of a section f to the basic open of f is a unit.
@[simp]
theorem
AlgebraicGeometry.RingedSpace.basicOpen_res
(X : AlgebraicGeometry.RingedSpace)
{U : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
{V : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
(i : U ⟶ V)
(f : ↑(X.presheaf.obj U))
:
AlgebraicGeometry.RingedSpace.basicOpen X ((X.presheaf.map i) f) = V.unop ⊓ AlgebraicGeometry.RingedSpace.basicOpen X f
@[simp]
theorem
AlgebraicGeometry.RingedSpace.basicOpen_res_eq
(X : AlgebraicGeometry.RingedSpace)
{U : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
{V : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
(i : U ⟶ V)
[CategoryTheory.IsIso i]
(f : ↑(X.presheaf.obj U))
:
AlgebraicGeometry.RingedSpace.basicOpen X ((X.presheaf.map i) f) = AlgebraicGeometry.RingedSpace.basicOpen X f
@[simp]
theorem
AlgebraicGeometry.RingedSpace.basicOpen_mul
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.obj (Opposite.op U)))
(g : ↑(X.presheaf.obj (Opposite.op U)))
:
theorem
AlgebraicGeometry.RingedSpace.basicOpen_of_isUnit
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
{f : ↑(X.presheaf.obj (Opposite.op U))}
(hf : IsUnit f)
: