Topology of irrational numbers #
In this file we prove the following theorems:
-
IsGδ.setOf_irrational,dense_irrational,eventually_residual_irrational: irrational numbers form a dense Gδ set; -
Irrational.eventually_forall_le_dist_cast_div,Irrational.eventually_forall_le_dist_cast_div_of_denom_le;Irrational.eventually_forall_le_dist_cast_rat_of_denom_le: a sufficiently small neighborhood of an irrational number is disjoint with the set of rational numbers with bounded denominator.
We also provide OrderTopology, NoMinOrder, NoMaxOrder, and DenselyOrdered
instances for {x // Irrational x}.
Tags #
irrational, residual
@[deprecated IsGδ.setOf_irrational]
Alias of IsGδ.setOf_irrational.
instance
Irrational.instNoMaxOrderSubtypeRealIrrationalLtInstLTReal :
NoMaxOrder { x : ℝ // Irrational x }
instance
Irrational.instNoMinOrderSubtypeRealIrrationalLtInstLTReal :
NoMinOrder { x : ℝ // Irrational x }