Hermite polynomials #
This file defines Polynomial.hermite n, the nth probabilists' Hermite polynomial.
Main definitions #
Polynomial.hermite n: thenth probabilists' Hermite polynomial, defined recursively as aPolynomial ℤ
Results #
Polynomial.hermite_succ: the recursionhermite (n+1) = (x - d/dx) (hermite n)Polynomial.coeff_hermite_explicit: a closed formula for (nonvanishing) coefficients in terms of binomial coefficients and double factorials.Polynomial.coeff_hermite_of_odd_add: forn,kwheren+kis odd,(hermite n).coeff kis zero.Polynomial.coeff_hermite_of_even_add: a closed formula for(hermite n).coeff kwhenn+kis even, equivalent toPolynomial.coeff_hermite_explicit.Polynomial.monic_hermite: for alln,hermite nis monic.Polynomial.degree_hermite: for alln,hermite nhas degreen.
References #
the probabilists' Hermite polynomials.
Equations
- Polynomial.hermite 0 = 1
- Polynomial.hermite (Nat.succ n) = Polynomial.X * Polynomial.hermite n - Polynomial.derivative (Polynomial.hermite n)
Instances For
@[simp]
theorem
Polynomial.hermite_succ
(n : ℕ)
:
Polynomial.hermite (n + 1) = Polynomial.X * Polynomial.hermite n - Polynomial.derivative (Polynomial.hermite n)
The recursion hermite (n+1) = (x - d/dx) (hermite n)
theorem
Polynomial.hermite_eq_iterate
(n : ℕ)
:
Polynomial.hermite n = (fun (p : Polynomial ℤ) => Polynomial.X * p - Polynomial.derivative p)^[n] 1
Lemmas about Polynomial.coeff #
theorem
Polynomial.coeff_hermite_succ_zero
(n : ℕ)
:
Polynomial.coeff (Polynomial.hermite (n + 1)) 0 = -Polynomial.coeff (Polynomial.hermite n) 1
theorem
Polynomial.coeff_hermite_succ_succ
(n : ℕ)
(k : ℕ)
:
Polynomial.coeff (Polynomial.hermite (n + 1)) (k + 1) = Polynomial.coeff (Polynomial.hermite n) k - (↑k + 2) * Polynomial.coeff (Polynomial.hermite n) (k + 2)
theorem
Polynomial.coeff_hermite_of_lt
{n : ℕ}
{k : ℕ}
(hnk : n < k)
:
Polynomial.coeff (Polynomial.hermite n) k = 0
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Polynomial.coeff_hermite_of_odd_add
{n : ℕ}
{k : ℕ}
(hnk : Odd (n + k))
:
Polynomial.coeff (Polynomial.hermite n) k = 0
theorem
Polynomial.coeff_hermite_explicit
(n : ℕ)
(k : ℕ)
:
Polynomial.coeff (Polynomial.hermite (2 * n + k)) k = (-1) ^ n * ↑(Nat.doubleFactorial (2 * n - 1)) * ↑(Nat.choose (2 * n + k) k)
Because of coeff_hermite_of_odd_add, every nonzero coefficient is described as follows.
theorem
Polynomial.coeff_hermite_of_even_add
{n : ℕ}
{k : ℕ}
(hnk : Even (n + k))
:
Polynomial.coeff (Polynomial.hermite n) k = (-1) ^ ((n - k) / 2) * ↑(Nat.doubleFactorial (n - k - 1)) * ↑(Nat.choose n k)
theorem
Polynomial.coeff_hermite
(n : ℕ)
(k : ℕ)
:
Polynomial.coeff (Polynomial.hermite n) k = if Even (n + k) then (-1) ^ ((n - k) / 2) * ↑(Nat.doubleFactorial (n - k - 1)) * ↑(Nat.choose n k) else 0