Cyclotomic polynomials and expand. #
We gather results relating cyclotomic polynomials and expand.
Main results #
Polynomial.cyclotomic_expand_eq_cyclotomic_mul: Ifpis a prime such that¬ p ∣ n, thenexpand R p (cyclotomic n R) = (cyclotomic (n * p) R) * (cyclotomic n R).Polynomial.cyclotomic_expand_eq_cyclotomic: Ifpis a prime such thatp ∣ n, thenexpand R p (cyclotomic n R) = cyclotomic (p * n) R.Polynomial.cyclotomic_mul_prime_eq_pow_of_not_dvd: IfRis of characteristicpand¬p ∣ n, thencyclotomic (n * p) R = (cyclotomic n R) ^ (p - 1).Polynomial.cyclotomic_mul_prime_dvd_eq_pow: IfRis of characteristicpandp ∣ n, thencyclotomic (n * p) R = (cyclotomic n R) ^ p.Polynomial.cyclotomic_mul_prime_pow_eq: IfRis of characteristicpand¬p ∣ m, thencyclotomic (p ^ k * m) R = (cyclotomic m R) ^ (p ^ k - p ^ (k - 1)).
@[simp]
theorem
Polynomial.cyclotomic_expand_eq_cyclotomic_mul
{p : ℕ}
{n : ℕ}
(hp : Nat.Prime p)
(hdiv : ¬p ∣ n)
(R : Type u_1)
[CommRing R]
:
(Polynomial.expand R p) (Polynomial.cyclotomic n R) = Polynomial.cyclotomic (n * p) R * Polynomial.cyclotomic n R
If p is a prime such that ¬ p ∣ n, then
expand R p (cyclotomic n R) = (cyclotomic (n * p) R) * (cyclotomic n R).
@[simp]
theorem
Polynomial.cyclotomic_expand_eq_cyclotomic
{p : ℕ}
{n : ℕ}
(hp : Nat.Prime p)
(hdiv : p ∣ n)
(R : Type u_1)
[CommRing R]
:
(Polynomial.expand R p) (Polynomial.cyclotomic n R) = Polynomial.cyclotomic (n * p) R
If p is a prime such that p ∣ n, then
expand R p (cyclotomic n R) = cyclotomic (p * n) R.
theorem
Polynomial.cyclotomic_irreducible_pow_of_irreducible_pow
{p : ℕ}
(hp : Nat.Prime p)
{R : Type u_1}
[CommRing R]
[IsDomain R]
{n : ℕ}
{m : ℕ}
(hmn : m ≤ n)
(h : Irreducible (Polynomial.cyclotomic (p ^ n) R))
:
Irreducible (Polynomial.cyclotomic (p ^ m) R)
If the p ^ nth cyclotomic polynomial is irreducible, so is the p ^ mth, for m ≤ n.
theorem
Polynomial.cyclotomic_irreducible_of_irreducible_pow
{p : ℕ}
(hp : Nat.Prime p)
{R : Type u_1}
[CommRing R]
[IsDomain R]
{n : ℕ}
(hn : n ≠ 0)
(h : Irreducible (Polynomial.cyclotomic (p ^ n) R))
:
If Irreducible (cyclotomic (p ^ n) R) then Irreducible (cyclotomic p R).
theorem
Polynomial.cyclotomic_mul_prime_eq_pow_of_not_dvd
(R : Type u_1)
{p : ℕ}
{n : ℕ}
[hp : Fact (Nat.Prime p)]
[Ring R]
[CharP R p]
(hn : ¬p ∣ n)
:
Polynomial.cyclotomic (n * p) R = Polynomial.cyclotomic n R ^ (p - 1)
If R is of characteristic p and ¬p ∣ n, then
cyclotomic (n * p) R = (cyclotomic n R) ^ (p - 1).
theorem
Polynomial.cyclotomic_mul_prime_dvd_eq_pow
(R : Type u_1)
{p : ℕ}
{n : ℕ}
[hp : Fact (Nat.Prime p)]
[Ring R]
[CharP R p]
(hn : p ∣ n)
:
Polynomial.cyclotomic (n * p) R = Polynomial.cyclotomic n R ^ p
If R is of characteristic p and p ∣ n, then
cyclotomic (n * p) R = (cyclotomic n R) ^ p.
theorem
Polynomial.isRoot_cyclotomic_prime_pow_mul_iff_of_charP
{m : ℕ}
{k : ℕ}
{p : ℕ}
{R : Type u_1}
[CommRing R]
[IsDomain R]
[hp : Fact (Nat.Prime p)]
[hchar : CharP R p]
{μ : R}
[NeZero ↑m]
:
Polynomial.IsRoot (Polynomial.cyclotomic (p ^ k * m) R) μ ↔ IsPrimitiveRoot μ m
If R is of characteristic p and ¬p ∣ m, then ζ is a root of cyclotomic (p ^ k * m) R
if and only if it is a primitive m-th root of unity.