Poisson distributions over ℕ #
Define the Poisson measure over the natural numbers
Main definitions #
poissonPMFReal: the functionfun n ↦ exp (- λ) * λ ^ n / n!forn ∈ ℕ, which is the probability density function of a Poisson distribution with rateλ > 0.poissonPMF:ℝ≥0∞-valued pdf,poissonPMF λ = ENNReal.ofReal (poissonPMFReal λ).poissonMeasure: a Poisson measure onℕ, parametrized by its rateλ.
The pmf of the Poisson distribution depending on its rate, as a function to ℝ
Equations
- ProbabilityTheory.poissonPMFReal r n = Real.exp (-↑r) * ↑r ^ n / ↑(Nat.factorial n)
Instances For
theorem
ProbabilityTheory.poissonPMFRealSum
(r : NNReal)
:
HasSum (fun (n : ℕ) => ProbabilityTheory.poissonPMFReal r n) 1
The Poisson pmf is positive for all natural numbers
The pmf of the Poisson distribution depending on its rate, as a PMF.
Equations
- ProbabilityTheory.poissonPMF r = { val := fun (n : ℕ) => ENNReal.ofReal (ProbabilityTheory.poissonPMFReal r n), property := ⋯ }
Instances For
The Poisson pmf is measurable.
Measure defined by the Poisson distribution
Instances For
Equations
- ⋯ = ⋯