UpperSet.Ici etc as Sup/sSup/Inf/sInf-homomorphisms #
In this file we define UpperSet.iciSupHom etc. These functions are UpperSet.Ici and
LowerSet.Iic bundled as SupHoms, InfHoms, sSupHoms, or sInfHoms.
UpperSet.Ici as a SupHom.
Equations
- UpperSet.iciSupHom = { toFun := UpperSet.Ici, map_sup' := ⋯ }
Instances For
@[simp]
theorem
UpperSet.coe_iciSupHom
{α : Type u_1}
[SemilatticeSup α]
:
⇑UpperSet.iciSupHom = UpperSet.Ici
@[simp]
theorem
UpperSet.iciSupHom_apply
{α : Type u_1}
[SemilatticeSup α]
(a : α)
:
UpperSet.iciSupHom a = UpperSet.Ici a
UpperSet.Ici as a sSupHom.
Equations
- UpperSet.icisSupHom = { toFun := UpperSet.Ici, map_sSup' := ⋯ }
Instances For
@[simp]
theorem
UpperSet.coe_icisSupHom
{α : Type u_1}
[CompleteLattice α]
:
⇑UpperSet.icisSupHom = UpperSet.Ici
@[simp]
theorem
UpperSet.icisSupHom_apply
{α : Type u_1}
[CompleteLattice α]
(a : α)
:
UpperSet.icisSupHom a = UpperSet.Ici a
LowerSet.Iic as an InfHom.
Equations
- LowerSet.iicInfHom = { toFun := LowerSet.Iic, map_inf' := ⋯ }
Instances For
@[simp]
theorem
LowerSet.coe_iicInfHom
{α : Type u_1}
[SemilatticeInf α]
:
⇑LowerSet.iicInfHom = LowerSet.Iic
@[simp]
theorem
LowerSet.iicInfHom_apply
{α : Type u_1}
[SemilatticeInf α]
(a : α)
:
LowerSet.iicInfHom a = LowerSet.Iic a
LowerSet.Iic as an sInfHom.
Equations
- LowerSet.iicsInfHom = { toFun := LowerSet.Iic, map_sInf' := ⋯ }
Instances For
@[simp]
theorem
LowerSet.coe_iicsInfHom
{α : Type u_1}
[CompleteLattice α]
:
⇑LowerSet.iicsInfHom = LowerSet.Iic
@[simp]
theorem
LowerSet.iicsInfHom_apply
{α : Type u_1}
[CompleteLattice α]
(a : α)
:
LowerSet.iicsInfHom a = LowerSet.Iic a