The category of distributive lattices #
This file defines DistLat, the category of distributive lattices.
Note that DistLat in the literature doesn't always
correspond to DistLat as we don't require bottom or top elements. Instead, this DistLat
corresponds to BddDistLat.
The category of distributive lattices.
Equations
Instances For
Equations
- DistLat.instCoeSortDistLatType = CategoryTheory.Bundled.coeSort
Equations
- DistLat.instDistribLatticeα X = X.str
Construct a bundled DistLat from a DistribLattice underlying type and typeclass.
Equations
Instances For
Equations
- DistLat.instInhabitedDistLat = { default := DistLat.of PUnit.{u_1 + 1} }
@[simp]
theorem
DistLat.Iso.mk_inv_toSupHom_toFun
{α : DistLat}
{β : DistLat}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(DistLat.Iso.mk e).inv.toSupHom a = (OrderIso.symm e) a
@[simp]
theorem
DistLat.Iso.mk_hom_toSupHom_toFun
{α : DistLat}
{β : DistLat}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(DistLat.Iso.mk e).hom.toSupHom a = e a
@[simp]
theorem
DistLat.dual_map :
∀ {X Y : DistLat} (a : LatticeHom ↑X ↑Y), DistLat.dual.map a = LatticeHom.dual a
OrderDual as a functor.
Equations
- One or more equations did not get rendered due to their size.