The Lévy-Prokhorov distance on spaces of finite measures and probability measures #
Main definitions #
MeasureTheory.levyProkhorovEDist: The Lévy-Prokhorov edistance between two measures.MeasureTheory.levyProkhorovDist: The Lévy-Prokhorov distance between two finite measures.
Main results #
levyProkhorovDist_pseudoMetricSpace_finiteMeasure: The Lévy-Prokhorov distance is a pseudoemetric on the space of finite measures.levyProkhorovDist_pseudoMetricSpace_probabilityMeasure: The Lévy-Prokhorov distance is a pseudoemetric on the space of probability measures.
Todo #
- Show that in Borel spaces, the Lévy-Prokhorov distance is a metric; not just a pseudometric.
- Prove that if
Xis metrizable and separable, then the Lévy-Prokhorov distance metrizes the topology of weak convergence.
Tags #
finite measure, probability measure, weak convergence, convergence in distribution, metrizability
Lévy-Prokhorov metric #
The Lévy-Prokhorov edistance between measures:
d(μ,ν) = inf {r ≥ 0 | ∀ B, μ B ≤ ν Bᵣ + r ∧ ν B ≤ μ Bᵣ + r}.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Lévy-Prokhorov distance between finite measures:
d(μ,ν) = inf {r ≥ 0 | ∀ B, μ B ≤ ν Bᵣ + r ∧ ν B ≤ μ Bᵣ + r}.
Equations
- MeasureTheory.levyProkhorovDist μ ν = (MeasureTheory.levyProkhorovEDist μ ν).toReal
Instances For
A type synonym, to be used for Measure α, FiniteMeasure α, or ProbabilityMeasure α,
when they are to be equipped with the Lévy-Prokhorov distance.
Equations
Instances For
The Lévy-Prokhorov distance levyProkhorovEDist makes Measure Ω a pseudoemetric
space. The instance is recorded on the type synonym LevyProkhorov (Measure Ω) := Measure Ω.
Equations
- MeasureTheory.instPseudoEMetricSpaceLevyProkhorovMeasure = PseudoEMetricSpace.mk ⋯ ⋯ ⋯ (uniformSpaceOfEDist MeasureTheory.levyProkhorovEDist ⋯ ⋯ ⋯) ⋯
The Lévy-Prokhorov distance levyProkhorovDist makes FiniteMeasure Ω a pseudometric
space. The instance is recorded on the type synonym
LevyProkhorov (FiniteMeasure Ω) := FiniteMeasure Ω.
Equations
- One or more equations did not get rendered due to their size.
The Lévy-Prokhorov distance levyProkhorovDist makes ProbabilityMeasure Ω a pseudoemetric
space. The instance is recorded on the type synonym
LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω.
Equations
- One or more equations did not get rendered due to their size.