Bounding of integrals by asymptotics #
We establish integrability of f from f = O(g).
Main results #
Asymptotics.IsBigO.integrableAtFilter: Iff = O[l] gon measurably generatedl,fis strongly measurable atl, andgis integrable atl, thenfis integrable atl.
theorem
Asymptotics.IsBigO.integrableAtFilter
{α : Type u_1}
{E : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : α → E}
{g : α → F}
{μ : MeasureTheory.Measure α}
{l : Filter α}
[Filter.IsMeasurablyGenerated l]
(hf : f =O[l] g)
(hfm : StronglyMeasurableAtFilter f l μ)
(hg : MeasureTheory.IntegrableAtFilter g l μ)
:
If f = O[l] g on measurably generated l, f is strongly measurable at l,
and g is integrable at l, then f is integrable at l.
theorem
Asymptotics.IsBigO.integrable
{α : Type u_1}
{E : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : α → E}
{g : α → F}
{μ : MeasureTheory.Measure α}
(hfm : MeasureTheory.AEStronglyMeasurable f μ)
(hf : f =O[⊤] g)
(hg : MeasureTheory.Integrable g μ)
:
Variant of MeasureTheory.Integrable.mono taking f =O[⊤] (g) instead of ‖f(x)‖ ≤ ‖g(x)‖