Index of a Subgroup #
In this file we define the index of a subgroup, and prove several divisibility properties. Several theorems proved in this file are known as Lagrange's theorem.
Main definitions #
H.index: the index ofH : Subgroup Gas a natural number, and returns 0 if the index is infinite.H.relindex K: the relative index ofH : Subgroup GinK : Subgroup Gas a natural number, and returns 0 if the relative index is infinite.
Main results #
card_mul_index:Nat.card H * H.index = Nat.card Gindex_mul_card:H.index * Fintype.card H = Fintype.card Gindex_dvd_card:H.index ∣ Fintype.card Grelindex_mul_index: IfH ≤ K, thenH.relindex K * K.index = H.indexindex_dvd_of_le: IfH ≤ K, thenK.index ∣ H.indexrelindex_mul_relindex:relindexis multiplicative in towers
The index of a subgroup as a natural number, and returns 0 if the index is infinite.
Equations
- AddSubgroup.index H = Nat.card (G ⧸ H)
Instances For
The index of a subgroup as a natural number, and returns 0 if the index is infinite.
Equations
- Subgroup.index H = Nat.card (G ⧸ H)
Instances For
The relative index of a subgroup as a natural number, and returns 0 if the relative index is infinite.
Equations
Instances For
The relative index of a subgroup as a natural number, and returns 0 if the relative index is infinite.
Equations
- Subgroup.relindex H K = Subgroup.index (Subgroup.subgroupOf H K)
Instances For
An additive subgroup has index two if and only if there exists a such that
for all b, exactly one of b + a and b belong to H.
Equations
- ⋯ = ⋯
Instances For
Finite index implies finite quotient.
Equations
Instances For
Finite index implies finite quotient.
Equations
- Subgroup.fintypeOfIndexNeZero hH = Fintype.ofFinite (G ⧸ H)
Instances For
Typeclass for finite index subgroups.
- finiteIndex : Subgroup.index H ≠ 0
The subgroup has finite index
Instances
Typeclass for finite index subgroups.
- finiteIndex : AddSubgroup.index H ≠ 0
The additive subgroup has finite index
Instances
A finite index subgroup has finite quotient
Instances For
A finite index subgroup has finite quotient.
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯