Field and action structures on the nonnegative rationals #
This file provides additional results about NNRat that cannot live in earlier files due to import
cycles.
instance
NNRat.instMulActionNNRatToMonoidToMonoidWithZeroToSemiringToStrictOrderedSemiringToLinearOrderedSemiringToLinearOrderedCommSemiringToLinearOrderedSemifieldInstNNRatCanonicallyLinearOrderedSemifield
{α : Type u_1}
[MulAction ℚ α]
:
A MulAction over ℚ restricts to a MulAction over ℚ≥0.
Equations
- One or more equations did not get rendered due to their size.
instance
NNRat.instDistribMulActionNNRatToMonoidToMonoidWithZeroToSemiringToStrictOrderedSemiringToLinearOrderedSemiringToLinearOrderedCommSemiringToLinearOrderedSemifieldInstNNRatCanonicallyLinearOrderedSemifieldToAddMonoid
{α : Type u_1}
[AddCommMonoid α]
[DistribMulAction ℚ α]
:
A DistribMulAction over ℚ restricts to a DistribMulAction over ℚ≥0.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
NNRat.coe_indicator
{α : Type u_1}
(s : Set α)
(f : α → NNRat)
(a : α)
:
↑(Set.indicator s f a) = Set.indicator s (fun (x : α) => ↑(f x)) a
theorem
Rat.toNNRat_div
{p : ℚ}
{q : ℚ}
(hp : 0 ≤ p)
:
Rat.toNNRat (p / q) = Rat.toNNRat p / Rat.toNNRat q
theorem
Rat.toNNRat_div'
{p : ℚ}
{q : ℚ}
(hq : 0 ≤ q)
:
Rat.toNNRat (p / q) = Rat.toNNRat p / Rat.toNNRat q