Fintype instance for nodup lists #
The subtype of {l : List α // l.nodup} over a [Fintype α]
admits a Fintype instance.
Implementation details #
To construct the Fintype instance, a function lifting a Multiset α
to the Finset (List α) that can construct it is provided.
This function is applied to the Finset.powerset of Finset.univ.
In general, a DecidableEq instance is not necessary to define this function,
but a proof of (List.permutations l).nodup is required to avoid it,
which is a TODO.
The Finset of l : List α that, given m : Multiset α, have the property ⟦l⟧ = m.
Equations
- Multiset.lists s = Quotient.liftOn s (fun (l : List α) => List.toFinset (List.permutations l)) ⋯
Instances For
@[simp]
@[simp]
theorem
Multiset.mem_lists_iff
{α : Type u_1}
[DecidableEq α]
(s : Multiset α)
(l : List α)
:
l ∈ Multiset.lists s ↔ s = ⟦l⟧
instance
fintypeNodupList
{α : Type u_1}
[DecidableEq α]
[Fintype α]
:
Fintype { l : List α // List.Nodup l }
Equations
- fintypeNodupList = Fintype.subtype (Finset.biUnion (Finset.powerset Finset.univ) fun (s : Finset α) => Multiset.lists s.val) ⋯