Limit preservation properties of functor.op and related constructions #
We formulate conditions about F which imply that F.op, F.unop, F.left_op and F.right_op
preserve certain (co)limits.
Future work #
- Dually, it is possible to formulate conditions about
F.opec. forFto preserve certain (co)limits.
If F : C ⥤ D preserves colimits of K.left_op : Jᵒᵖ ⥤ C, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves
limits of K : J ⥤ Cᵒᵖ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ preserves colimits of K.left_op : Jᵒᵖ ⥤ C, then F.left_op : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.right_op : C ⥤ Dᵒᵖ preserves
limits of K : J ⥤ C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.unop : C ⥤ D preserves
limits of K : J ⥤ C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D preserves limits of K.left_op : Jᵒᵖ ⥤ C, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves
colimits of K : J ⥤ Cᵒᵖ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ preserves limits of K.left_op : Jᵒᵖ ⥤ C, then F.left_op : Cᵒᵖ ⥤ D preserves
colimits of K : J ⥤ Cᵒᵖ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.right_op : C ⥤ Dᵒᵖ preserves
colimits of K : J ⥤ C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.unop : C ⥤ D preserves
colimits of K : J ⥤ C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D preserves colimits of shape Jᵒᵖ, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of
shape J.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeOp J F = { preservesLimit := fun {K : CategoryTheory.Functor J Cᵒᵖ} => CategoryTheory.Limits.preservesLimitOp K F }
Instances For
If F : C ⥤ Dᵒᵖ preserves colimits of shape Jᵒᵖ, then F.left_op : Cᵒᵖ ⥤ D preserves limits
of shape J.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeLeftOp J F = { preservesLimit := fun {K : CategoryTheory.Functor J Cᵒᵖ} => CategoryTheory.Limits.preservesLimitLeftOp K F }
Instances For
If F : Cᵒᵖ ⥤ D preserves colimits of shape Jᵒᵖ, then F.right_op : C ⥤ Dᵒᵖ preserves limits
of shape J.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeRightOp J F = { preservesLimit := fun {K : CategoryTheory.Functor J C} => CategoryTheory.Limits.preservesLimitRightOp K F }
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of shape Jᵒᵖ, then F.unop : C ⥤ D preserves limits of
shape J.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeUnop J F = { preservesLimit := fun {K : CategoryTheory.Functor J C} => CategoryTheory.Limits.preservesLimitUnop K F }
Instances For
If F : C ⥤ D preserves limits of shape Jᵒᵖ, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of
shape J.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeOp J F = { preservesColimit := fun {K : CategoryTheory.Functor J Cᵒᵖ} => CategoryTheory.Limits.preservesColimitOp K F }
Instances For
If F : C ⥤ Dᵒᵖ preserves limits of shape Jᵒᵖ, then F.left_op : Cᵒᵖ ⥤ D preserves colimits
of shape J.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeLeftOp J F = { preservesColimit := fun {K : CategoryTheory.Functor J Cᵒᵖ} => CategoryTheory.Limits.preservesColimitLeftOp K F }
Instances For
If F : Cᵒᵖ ⥤ D preserves limits of shape Jᵒᵖ, then F.right_op : C ⥤ Dᵒᵖ preserves colimits
of shape J.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeRightOp J F = { preservesColimit := fun {K : CategoryTheory.Functor J C} => CategoryTheory.Limits.preservesColimitRightOp K F }
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of shape Jᵒᵖ, then F.unop : C ⥤ D preserves colimits
of shape J.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeUnop J F = { preservesColimit := fun {K : CategoryTheory.Functor J C} => CategoryTheory.Limits.preservesColimitUnop K F }
Instances For
If F : C ⥤ D preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ preserves colimits, then F.left_op : Cᵒᵖ ⥤ D preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D preserves colimits, then F.right_op : C ⥤ Dᵒᵖ preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits, then F.unop : C ⥤ D preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ preserves limits, then F.left_op : Cᵒᵖ ⥤ D preserves colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D preserves limits, then F.right_op : C ⥤ Dᵒᵖ preserves colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits, then F.unop : C ⥤ D preserves colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D preserves finite colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite
limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ preserves finite colimits, then F.left_op : Cᵒᵖ ⥤ D preserves finite
limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D preserves finite colimits, then F.right_op : C ⥤ Dᵒᵖ preserves finite
limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite colimits, then F.unop : C ⥤ D preserves finite
limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D preserves finite limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite
colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ preserves finite limits, then F.left_op : Cᵒᵖ ⥤ D preserves finite
colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D preserves finite limits, then F.right_op : C ⥤ Dᵒᵖ preserves finite
colimits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite limits, then F.unop : C ⥤ D preserves finite
colimits.
Equations
- One or more equations did not get rendered due to their size.