Documentation

Mathlib.CategoryTheory.Functor.Functorial

Unbundled functors, as a typeclass decorating the object-level function. #

class CategoryTheory.Functorial {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CD) :
Type (max v₁ v₂ u₁ u₂)

An unbundled functor.

Instances
def CategoryTheory.map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CD) [CategoryTheory.Functorial F] {X : C} {Y : C} (f : X Y) :
F X F Y

If F : C → D (just a function) has [Functorial F], we can write map F f : F X ⟶ F Y for the action of F on a morphism f : X ⟶ Y.

Equations

Bundle a functorial function as a functor.

Equations
Equations
  • CategoryTheory.functorial_id = { map' := fun {X Y : C} (f : X Y) => f, map_id' := , map_comp' := }

G ∘ F is a functorial if both F and G are.

Equations
  • One or more equations did not get rendered due to their size.