Trigonometric functions as sums of infinite series #
In this file we express trigonometric functions in terms of their series expansion.
Main results #
Complex.hasSum_cos,Complex.cos_eq_tsum:Complex.cosas the sum of an infinite series.Real.hasSum_cos,Real.cos_eq_tsum:Real.cosas the sum of an infinite series.Complex.hasSum_sin,Complex.sin_eq_tsum:Complex.sinas the sum of an infinite series.Real.hasSum_sin,Real.sin_eq_tsum:Real.sinas the sum of an infinite series.
cos and sin for ℝ and ℂ #
theorem
Complex.hasSum_cos'
(z : ℂ)
:
HasSum (fun (n : ℕ) => (z * Complex.I) ^ (2 * n) / ↑(Nat.factorial (2 * n))) (Complex.cos z)
theorem
Complex.hasSum_cos
(z : ℂ)
:
HasSum (fun (n : ℕ) => (-1) ^ n * z ^ (2 * n) / ↑(Nat.factorial (2 * n))) (Complex.cos z)
The power series expansion of Complex.cos.
The power series expansion of Complex.sin.
theorem
Complex.cos_eq_tsum'
(z : ℂ)
:
Complex.cos z = ∑' (n : ℕ), (z * Complex.I) ^ (2 * n) / ↑(Nat.factorial (2 * n))
theorem
Complex.cos_eq_tsum
(z : ℂ)
:
Complex.cos z = ∑' (n : ℕ), (-1) ^ n * z ^ (2 * n) / ↑(Nat.factorial (2 * n))
cosh and sinh for ℝ and ℂ #
theorem
Complex.hasSum_cosh
(z : ℂ)
:
HasSum (fun (n : ℕ) => z ^ (2 * n) / ↑(Nat.factorial (2 * n))) (Complex.cosh z)
The power series expansion of Complex.cosh.
theorem
Complex.hasSum_sinh
(z : ℂ)
:
HasSum (fun (n : ℕ) => z ^ (2 * n + 1) / ↑(Nat.factorial (2 * n + 1))) (Complex.sinh z)
The power series expansion of Complex.sinh.
theorem
Complex.cosh_eq_tsum
(z : ℂ)
:
Complex.cosh z = ∑' (n : ℕ), z ^ (2 * n) / ↑(Nat.factorial (2 * n))
theorem
Complex.sinh_eq_tsum
(z : ℂ)
:
Complex.sinh z = ∑' (n : ℕ), z ^ (2 * n + 1) / ↑(Nat.factorial (2 * n + 1))