Results on TrivSqZeroExt R M related to the norm #
This file contains results about NormedSpace.exp for TrivSqZeroExt.
It also contains a definition of the $โ^1$ norm,
which defines $|r + m| \coloneqq |r| + |m|$.
This is not a particularly canonical choice of definition,
but it is sufficient to provide a NormedAlgebra instance,
and thus enables NormedSpace.exp_add_of_commute to be used on TrivSqZeroExt.
If the non-canonicity becomes problematic in future,
we could keep the collection of instances behind an open scoped.
Main results #
TrivSqZeroExt.fst_expTrivSqZeroExt.snd_expTrivSqZeroExt.exp_inlTrivSqZeroExt.exp_inr- The $โ^1$ norm on
TrivSqZeroExt:TrivSqZeroExt.instL1SeminormedAddCommGroupTrivSqZeroExt.instL1SeminormedRingTrivSqZeroExt.instL1SeminormedCommRingTrivSqZeroExt.instL1BoundedSMulTrivSqZeroExt.instL1NormedAddCommGroupTrivSqZeroExt.instL1NormedRingTrivSqZeroExt.instL1NormedCommRingTrivSqZeroExt.instL1NormedSpaceTrivSqZeroExt.instL1NormedAlgebra
TODO #
- Generalize more of these results to non-commutative
R. In principle, under sufficient conditions we should expect(exp ๐ x).snd = โซ t in 0..1, exp ๐ (t โข x.fst) โข op (exp ๐ ((1 - t) โข x.fst)) โข x.snd(Physics.SE, and https://link.springer.com/chapter/10.1007/978-3-540-44953-9_2).
If exp R x.fst converges to e then (exp R x).snd converges to e โข x.snd.
If exp R x.fst converges to e then exp R x converges to inl e + inr (e โข x.snd).
Polar form of trivial-square-zero extension.
More convenient version of TrivSqZeroExt.eq_smul_exp_of_invertible for when R is a
field.
The $โ^1$ norm on the trivial square zero extension #
Equations
- TrivSqZeroExt.instL1SeminormedAddCommGroup = inferInstanceAs (SeminormedAddCommGroup (WithLp 1 (R ร M)))
Equations
- TrivSqZeroExt.instL1SeminormedRing = let __spread.0 := inferInstance; let __spread.1 := inferInstance; SeminormedRing.mk โฏ โฏ
Equations
- โฏ = โฏ
Equations
- โฏ = โฏ
Equations
- TrivSqZeroExt.instL1SeminormedCommRing = let __spread.0 := inferInstance; let __spread.1 := inferInstance; SeminormedCommRing.mk โฏ
Equations
- TrivSqZeroExt.instL1NormedAddCommGroup = inferInstanceAs (NormedAddCommGroup (WithLp 1 (R ร M)))
Equations
- TrivSqZeroExt.instL1NormedRing = let __spread.0 := inferInstance; let __spread.1 := inferInstance; NormedRing.mk โฏ โฏ
Equations
- TrivSqZeroExt.instL1NormedCommRing = let __spread.0 := inferInstance; let __spread.1 := inferInstance; NormedCommRing.mk โฏ
Equations
- TrivSqZeroExt.instL1NormedSpace ๐ = inferInstanceAs (NormedSpace ๐ (WithLp 1 (R ร M)))