Documentation

Mathlib.Analysis.Distribution.SchwartzSpace

Schwartz space #

This file defines the Schwartz space. Usually, the Schwartz space is defined as the set of smooth functions $f : ℝ^n β†’ β„‚$ such that there exists $C_{Ξ±Ξ²} > 0$ with $$|x^Ξ± βˆ‚^Ξ² f(x)| < C_{Ξ±Ξ²}$$ for all $x ∈ ℝ^n$ and for all multiindices $Ξ±, Ξ²$. In mathlib, we use a slightly different approach and define the Schwartz space as all smooth functions f : E β†’ F, where E and F are real normed vector spaces such that for all natural numbers k and n we have uniform bounds β€–xβ€–^k * β€–iteratedFDeriv ℝ n f xβ€– < C. This approach completely avoids using partial derivatives as well as polynomials. We construct the topology on the Schwartz space by a family of seminorms, which are the best constants in the above estimates. The abstract theory of topological vector spaces developed in SeminormFamily.moduleFilterBasis and WithSeminorms.toLocallyConvexSpace turns the Schwartz space into a locally convex topological vector space.

Main definitions #

Main statements #

Implementation details #

The implementation of the seminorms is taken almost literally from ContinuousLinearMap.opNorm.

Notation #

Tags #

Schwartz space, tempered distributions

structure SchwartzMap (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] :
Type (max u_4 u_5)

A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • SchwartzMap.instFunLike = { coe := fun (f : SchwartzMap E F) => f.toFun, coe_injective' := β‹― }
      instance SchwartzMap.instCoeFun {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] :
      CoeFun (SchwartzMap E F) fun (x : SchwartzMap E F) => E β†’ F

      Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun.

      Equations
      • SchwartzMap.instCoeFun = DFunLike.hasCoeToFun
      theorem SchwartzMap.decay {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (k : β„•) (n : β„•) :
      βˆƒ (C : ℝ), 0 < C ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ C

      All derivatives of a Schwartz function are rapidly decaying.

      Every Schwartz function is smooth.

      Every Schwartz function is continuous.

      Every Schwartz function is differentiable.

      Every Schwartz function is differentiable at any point.

      theorem SchwartzMap.ext {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : SchwartzMap E F} {g : SchwartzMap E F} (h : βˆ€ (x : E), f x = g x) :
      f = g

      Auxiliary lemma, used in proving the more general result isBigO_cocompact_rpow.

      theorem SchwartzMap.bounds_nonempty {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) :
      βˆƒ (c : ℝ), c ∈ {c : ℝ | 0 ≀ c ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ c}
      theorem SchwartzMap.decay_smul_aux {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) (c : π•œ) (x : E) :

      Helper definition for the seminorms of the Schwartz space.

      Equations
      Instances For
        theorem SchwartzMap.seminormAux_le_bound {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :

        If one controls the norm of every A x, then one controls the norm of A.

        Algebraic properties #

        instance SchwartzMap.instSMul {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
        SMul π•œ (SchwartzMap E F)
        Equations
        • SchwartzMap.instSMul = { smul := fun (c : π•œ) (f : SchwartzMap E F) => { toFun := c β€’ ⇑f, smooth' := β‹―, decay' := β‹― } }
        @[simp]
        theorem SchwartzMap.smul_apply {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {f : SchwartzMap E F} {c : π•œ} {x : E} :
        (c β€’ f) x = c β€’ f x
        instance SchwartzMap.instIsScalarTower {π•œ : Type u_1} {π•œ' : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMul π•œ π•œ'] [IsScalarTower π•œ π•œ' F] :
        IsScalarTower π•œ π•œ' (SchwartzMap E F)
        Equations
        • β‹― = β‹―
        instance SchwartzMap.instSMulCommClass {π•œ : Type u_1} {π•œ' : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMulCommClass π•œ π•œ' F] :
        SMulCommClass π•œ π•œ' (SchwartzMap E F)
        Equations
        • β‹― = β‹―
        theorem SchwartzMap.seminormAux_smul_le {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (c : π•œ) (f : SchwartzMap E F) :
        Equations
        • SchwartzMap.instNSMul = { smul := fun (c : β„•) (f : SchwartzMap E F) => { toFun := c β€’ ⇑f, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instZSMul = { smul := fun (c : β„€) (f : SchwartzMap E F) => { toFun := c β€’ ⇑f, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instZero = { zero := { toFun := fun (x : E) => 0, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instInhabited = { default := 0 }
        @[simp]
        @[simp]
        theorem SchwartzMap.zero_apply {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {x : E} :
        0 x = 0
        Equations
        • SchwartzMap.instNeg = { neg := fun (f : SchwartzMap E F) => { toFun := -⇑f, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instAdd = { add := fun (f g : SchwartzMap E F) => { toFun := ⇑f + ⇑g, smooth' := β‹―, decay' := β‹― } }
        @[simp]
        theorem SchwartzMap.add_apply {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : SchwartzMap E F} {g : SchwartzMap E F} {x : E} :
        (f + g) x = f x + g x
        Equations
        • SchwartzMap.instSub = { sub := fun (f g : SchwartzMap E F) => { toFun := ⇑f - ⇑g, smooth' := β‹―, decay' := β‹― } }
        @[simp]
        theorem SchwartzMap.sub_apply {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : SchwartzMap E F} {g : SchwartzMap E F} {x : E} :
        (f - g) x = f x - g x
        Equations

        Coercion as an additive homomorphism.

        Equations
        Instances For
          instance SchwartzMap.instModule {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
          Module π•œ (SchwartzMap E F)
          Equations

          Seminorms on Schwartz space #

          def SchwartzMap.seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) :
          Seminorm π•œ (SchwartzMap E F)

          The seminorms of the Schwartz space given by the best constants in the definition of 𝓒(E, F).

          Equations
          Instances For
            theorem SchwartzMap.seminorm_le_bound (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :
            (SchwartzMap.seminorm π•œ k n) f ≀ M

            If one controls the seminorm for every x, then one controls the seminorm.

            theorem SchwartzMap.seminorm_le_bound' (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap ℝ F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : ℝ), |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ M) :
            (SchwartzMap.seminorm π•œ k n) f ≀ M

            If one controls the seminorm for every x, then one controls the seminorm.

            Variant for functions 𝓒(ℝ, F).

            theorem SchwartzMap.le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) (x : E) :

            The seminorm controls the Schwartz estimate for any fixed x.

            theorem SchwartzMap.le_seminorm' (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap ℝ F) (x : ℝ) :
            |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ (SchwartzMap.seminorm π•œ k n) f

            The seminorm controls the Schwartz estimate for any fixed x.

            Variant for functions 𝓒(ℝ, F).

            theorem SchwartzMap.norm_iteratedFDeriv_le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (n : β„•) (xβ‚€ : E) :
            β€–iteratedFDeriv ℝ n (⇑f) xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 n) f
            theorem SchwartzMap.norm_pow_mul_le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (k : β„•) (xβ‚€ : E) :
            β€–xβ‚€β€– ^ k * β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ k 0) f
            theorem SchwartzMap.norm_le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (xβ‚€ : E) :
            β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 0) f
            def schwartzSeminormFamily (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

            The family of Schwartz seminorms.

            Equations
            Instances For
              @[simp]
              theorem SchwartzMap.schwartzSeminormFamily_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (n : β„•) (k : β„•) :
              schwartzSeminormFamily π•œ E F (n, k) = SchwartzMap.seminorm π•œ n k
              @[simp]
              theorem SchwartzMap.schwartzSeminormFamily_apply_zero (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              schwartzSeminormFamily π•œ E F 0 = SchwartzMap.seminorm π•œ 0 0
              theorem SchwartzMap.one_add_le_sup_seminorm_apply {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {m : β„• Γ— β„•} {k : β„•} {n : β„•} (hk : k ≀ m.1) (hn : n ≀ m.2) (f : SchwartzMap E F) (x : E) :
              (1 + β€–xβ€–) ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ 2 ^ m.1 * (Finset.sup (Finset.Iic m) fun (m : β„• Γ— β„•) => SchwartzMap.seminorm π•œ m.1 m.2) f

              A more convenient version of le_sup_seminorm_apply.

              The set Finset.Iic m is the set of all pairs (k', n') with k' ≀ m.1 and n' ≀ m.2. Note that the constant is far from optimal.

              The topology on the Schwartz space #

              theorem schwartz_withSeminorms (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              instance SchwartzMap.instContinuousSMul {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              Equations
              • β‹― = β‹―

              Functions of temperate growth #

              A function is called of temperate growth if it is smooth and all iterated derivatives are polynomially bounded.

              Equations
              Instances For
                theorem Function.HasTemperateGrowth.norm_iteratedFDeriv_le_uniform_aux {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} (hf_temperate : Function.HasTemperateGrowth f) (n : β„•) :
                βˆƒ (k : β„•) (C : ℝ), 0 ≀ C ∧ βˆ€ N ≀ n, βˆ€ (x : E), β€–iteratedFDeriv ℝ N f xβ€– ≀ C * (1 + β€–xβ€–) ^ k

                Construction of continuous linear maps between Schwartz spaces #

                def SchwartzMap.mkLM {π•œ : Type u_1} {π•œ' : Type u_2} {D : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} (A : (D β†’ E) β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (⇑f + ⇑g) x = A (⇑f) x + A (⇑g) x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ ⇑f) x = Οƒ a β€’ A (⇑f) x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ ⊀ (A ⇑f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A ⇑f) xβ€– ≀ C * (Finset.sup s (schwartzSeminormFamily π•œ D E)) f) :

                Create a semilinear map between Schwartz spaces.

                Note: This is a helper definition for mkCLM.

                Equations
                • SchwartzMap.mkLM A hadd hsmul hsmooth hbound = { toAddHom := { toFun := fun (f : SchwartzMap D E) => { toFun := A ⇑f, smooth' := β‹―, decay' := β‹― }, map_add' := β‹― }, map_smul' := β‹― }
                Instances For
                  def SchwartzMap.mkCLM {π•œ : Type u_1} {π•œ' : Type u_2} {D : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : (D β†’ E) β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (⇑f + ⇑g) x = A (⇑f) x + A (⇑g) x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ ⇑f) x = Οƒ a β€’ A (⇑f) x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ ⊀ (A ⇑f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A ⇑f) xβ€– ≀ C * (Finset.sup s (schwartzSeminormFamily π•œ D E)) f) :

                  Create a continuous semilinear map between Schwartz spaces.

                  For an example of using this definition, see fderivCLM.

                  Equations
                  Instances For
                    def SchwartzMap.evalCLM {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :

                    The map applying a vector to Hom-valued Schwartz function as a continuous linear map.

                    Equations
                    Instances For

                      The map f ↦ (x ↦ B (f x) (g x)) as a continuous π•œ-linear map on Schwartz space, where B is a continuous π•œ-linear map and g is a function of temperate growth.

                      Equations
                      Instances For
                        def SchwartzMap.compCLM (π•œ : Type u_1) {D : Type u_3} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (hg_upper : βˆƒ (k : β„•) (C : ℝ), βˆ€ (x : D), β€–xβ€– ≀ C * (1 + β€–g xβ€–) ^ k) :

                        Composition with a function on the right is a continuous linear map on Schwartz space provided that the function is temperate and growths polynomially near infinity.

                        Equations
                        Instances For

                          Derivatives of Schwartz functions #

                          def SchwartzMap.fderivCLM (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

                          The FrΓ©chet derivative on Schwartz space as a continuous π•œ-linear map.

                          Equations
                          Instances For
                            @[simp]
                            theorem SchwartzMap.fderivCLM_apply (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                            ((SchwartzMap.fderivCLM π•œ) f) x = fderiv ℝ (⇑f) x
                            def SchwartzMap.derivCLM (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

                            The 1-dimensional derivative on Schwartz space as a continuous π•œ-linear map.

                            Equations
                            Instances For
                              @[simp]
                              theorem SchwartzMap.derivCLM_apply (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap ℝ F) (x : ℝ) :
                              ((SchwartzMap.derivCLM π•œ) f) x = deriv (⇑f) x
                              def SchwartzMap.pderivCLM (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :

                              The partial derivative (or directional derivative) in the direction m : E as a continuous linear map on Schwartz space.

                              Equations
                              Instances For
                                @[simp]
                                theorem SchwartzMap.pderivCLM_apply (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) (f : SchwartzMap E F) (x : E) :
                                ((SchwartzMap.pderivCLM π•œ m) f) x = (fderiv ℝ (⇑f) x) m
                                theorem SchwartzMap.pderivCLM_eq_lineDeriv (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) (f : SchwartzMap E F) (x : E) :
                                ((SchwartzMap.pderivCLM π•œ m) f) x = lineDeriv ℝ (⇑f) x m
                                def SchwartzMap.iteratedPDeriv (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} :
                                (Fin n β†’ E) β†’ SchwartzMap E F β†’L[π•œ] SchwartzMap E F

                                The iterated partial derivative (or directional derivative) as a continuous linear map on Schwartz space.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem SchwartzMap.iteratedPDeriv_zero (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : Fin 0 β†’ E) (f : SchwartzMap E F) :
                                  (SchwartzMap.iteratedPDeriv π•œ m) f = f
                                  @[simp]
                                  theorem SchwartzMap.iteratedPDeriv_one (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : Fin 1 β†’ E) (f : SchwartzMap E F) :
                                  (SchwartzMap.iteratedPDeriv π•œ m) f = (SchwartzMap.pderivCLM π•œ (m 0)) f
                                  theorem SchwartzMap.iteratedPDeriv_succ_left (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} (m : Fin (n + 1) β†’ E) (f : SchwartzMap E F) :
                                  (SchwartzMap.iteratedPDeriv π•œ m) f = (SchwartzMap.pderivCLM π•œ (m 0)) ((SchwartzMap.iteratedPDeriv π•œ (Fin.tail m)) f)
                                  theorem SchwartzMap.iteratedPDeriv_succ_right (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} (m : Fin (n + 1) β†’ E) (f : SchwartzMap E F) :
                                  theorem SchwartzMap.iteratedPDeriv_eq_iteratedFDeriv (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} {m : Fin n β†’ E} {f : SchwartzMap E F} {x : E} :
                                  ((SchwartzMap.iteratedPDeriv π•œ m) f) x = (iteratedFDeriv ℝ n (⇑f) x) m

                                  Inclusion into the space of bounded continuous functions #

                                  Schwartz functions as continuous functions

                                  Equations
                                  Instances For

                                    The inclusion map from Schwartz functions to bounded continuous functions as a linear map.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem SchwartzMap.toBoundedContinuousFunctionLM_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :

                                      The inclusion map from Schwartz functions to bounded continuous functions as a continuous linear map.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem SchwartzMap.toBoundedContinuousFunctionCLM_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                        def SchwartzMap.delta (π•œ : Type u_1) {E : Type u_4} (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (x : E) :
                                        SchwartzMap E F β†’L[π•œ] F

                                        The Dirac delta distribution

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem SchwartzMap.delta_apply (π•œ : Type u_1) {E : Type u_4} (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (xβ‚€ : E) (f : SchwartzMap E F) :
                                          (SchwartzMap.delta π•œ F xβ‚€) f = f xβ‚€

                                          Schwartz functions as continuous functions vanishing at infinity.

                                          Equations
                                          Instances For

                                            The inclusion map from Schwartz functions to continuous functions vanishing at infinity as a linear map.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem SchwartzMap.toZeroAtInftyLM_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [ProperSpace E] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                              ((SchwartzMap.toZeroAtInftyLM π•œ E F) f) x = f x

                                              The inclusion map from Schwartz functions to continuous functions vanishing at infinity as a continuous linear map.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem SchwartzMap.toZeroAtInftyCLM_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [ProperSpace E] [IsROrC π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                                ((SchwartzMap.toZeroAtInftyCLM π•œ E F) f) x = f x