Augmented simplicial objects with an extra degeneracy #
In simplicial homotopy theory, in order to prove that the connected components
of a simplicial set X are contractible, it suffices to construct an extra
degeneracy as it is defined in Simplicial Homotopy Theory by Goerss-Jardine p. 190.
It consists of a series of maps π₀ X → X _[0] and X _[n] → X _[n+1] which
behave formally like an extra degeneracy σ (-1). It can be thought as a datum
associated to the augmented simplicial set X → π₀ X.
In this file, we adapt this definition to the case of augmented simplicial objects in any category.
Main definitions #
- the structure
ExtraDegeneracy Xfor anyX : SimplicialObject.Augmented C ExtraDegeneracy.map: extra degeneracies are preserved by the application of any functorC ⥤ DSSet.Augmented.StandardSimplex.extraDegeneracy: the standardn-simplex has an extra degeneracyArrow.AugmentedCechNerve.extraDegeneracy: the Čech nerve of a split epimorphism has an extra degeneracyExtraDegeneracy.homotopyEquiv: in the case the categoryCis preadditive, if we have an extra degeneracy onX : SimplicialObject.Augmented C, then the augmentation on the alternating face map complex ofXis a homotopy equivalence.
References #
- [Paul G. Goerss, John F. Jardine, Simplicial Homotopy Theory][goerss-jardine-2009]
The datum of an extra degeneracy is a technical condition on
augmented simplicial objects. The morphisms s' and s n of the
structure formally behave like extra degeneracies σ (-1).
- s' : CategoryTheory.SimplicialObject.Augmented.point.obj X ⟶ (CategoryTheory.SimplicialObject.Augmented.drop.obj X).obj (Opposite.op (SimplexCategory.mk 0))
- s : (n : ℕ) → (CategoryTheory.SimplicialObject.Augmented.drop.obj X).obj (Opposite.op (SimplexCategory.mk n)) ⟶ (CategoryTheory.SimplicialObject.Augmented.drop.obj X).obj (Opposite.op (SimplexCategory.mk (n + 1)))
- s'_comp_ε : CategoryTheory.CategoryStruct.comp self.s' (X.hom.app (Opposite.op (SimplexCategory.mk 0))) = CategoryTheory.CategoryStruct.id (CategoryTheory.SimplicialObject.Augmented.point.obj X)
- s₀_comp_δ₁ : CategoryTheory.CategoryStruct.comp (self.s 0) (CategoryTheory.SimplicialObject.δ X.left 1) = CategoryTheory.CategoryStruct.comp (X.hom.app (Opposite.op (SimplexCategory.mk 0))) self.s'
- s_comp_δ₀ : ∀ (n : ℕ), CategoryTheory.CategoryStruct.comp (self.s n) (CategoryTheory.SimplicialObject.δ X.left 0) = CategoryTheory.CategoryStruct.id ((CategoryTheory.SimplicialObject.Augmented.drop.obj X).obj (Opposite.op (SimplexCategory.mk n)))
- s_comp_δ : ∀ (n : ℕ) (i : Fin (n + 2)), CategoryTheory.CategoryStruct.comp (self.s (n + 1)) (CategoryTheory.SimplicialObject.δ X.left (Fin.succ i)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialObject.δ X.left i) (self.s n)
- s_comp_σ : ∀ (n : ℕ) (i : Fin (n + 1)), CategoryTheory.CategoryStruct.comp (self.s n) (CategoryTheory.SimplicialObject.σ X.left (Fin.succ i)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialObject.σ X.left i) (self.s (n + 1))
Instances For
If ed is an extra degeneracy for X : SimplicialObject.Augmented C and
F : C ⥤ D is a functor, then ed.map F is an extra degeneracy for the
augmented simplicial object in D obtained by applying F to X.
Equations
- SimplicialObject.Augmented.ExtraDegeneracy.map ed F = { s' := F.map ed.s', s := fun (n : ℕ) => F.map (ed.s n), s'_comp_ε := ⋯, s₀_comp_δ₁ := ⋯, s_comp_δ₀ := ⋯, s_comp_δ := ⋯, s_comp_σ := ⋯ }
Instances For
If X and Y are isomorphic augmented simplicial objects, then an extra
degeneracy for X gives also an extra degeneracy for Y
Equations
- One or more equations did not get rendered due to their size.
Instances For
When [HasZero X], the shift of a map f : Fin n → X
is a map Fin (n+1) → X which sends 0 to 0 and i.succ to f i.
Equations
- SSet.Augmented.StandardSimplex.shiftFun f i = if x : i = 0 then 0 else f (Fin.pred i x)
Instances For
The shift of a morphism f : [n] → Δ in SimplexCategory corresponds to
the monotone map which sends 0 to 0 and i.succ to f.toOrderHom i.
Equations
- SSet.Augmented.StandardSimplex.shift f = SimplexCategory.Hom.mk { toFun := SSet.Augmented.StandardSimplex.shiftFun ⇑(SimplexCategory.Hom.toOrderHom f), monotone' := ⋯ }
Instances For
The obvious extra degeneracy on the standard simplex.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The extra degeneracy map on the Čech nerve of a split epi. It is
given on the 0-projection by the given section of the split epi,
and by shifting the indices on the other projections.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The augmented Čech nerve associated to a split epimorphism has an extra degeneracy.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If C is a preadditive category and X is an augmented simplicial object
in C that has an extra degeneracy, then the augmentation on the alternating
face map complex of X is a homotopy equivalence.
Equations
- One or more equations did not get rendered due to their size.