Basic results about setwise gcds on normalized gcd monoid with a division. #
Main results #
Finset.Nat.gcd_div_eq_one: given a nonempty Finsetsand a functionffromstoℕ, ifd = s.gcd, then thegcdof(f i) / dequals1.Finset.Int.gcd_div_eq_one: given a nonempty Finsetsand a functionffromstoℤ, ifd = s.gcd, then thegcdof(f i) / dequals1.Finset.Polynomial.gcd_div_eq_one: given a nonempty Finsetsand a functionffromstoK[X], ifd = s.gcd, then thegcdof(f i) / dequals1.
TODO #
Add a typeclass to state these results uniformly.
theorem
Finset.Nat.gcd_div_eq_one
{β : Type u_1}
{f : β → ℕ}
(s : Finset β)
{x : β}
(hx : x ∈ s)
(hfz : f x ≠ 0)
:
(Finset.gcd s fun (b : β) => f b / Finset.gcd s f) = 1
Given a nonempty Finset s and a function f from s to ℕ, if d = s.gcd,
then the gcd of (f i) / d is equal to 1.
theorem
Finset.Nat.gcd_div_id_eq_one
{s : Finset ℕ}
{x : ℕ}
(hx : x ∈ s)
(hnz : x ≠ 0)
:
(Finset.gcd s fun (b : ℕ) => b / Finset.gcd s id) = 1
theorem
Finset.Int.gcd_div_eq_one
{β : Type u_1}
{f : β → ℤ}
(s : Finset β)
{x : β}
(hx : x ∈ s)
(hfz : f x ≠ 0)
:
(Finset.gcd s fun (b : β) => f b / Finset.gcd s f) = 1
Given a nonempty Finset s and a function f from s to ℤ, if d = s.gcd,
then the gcd of (f i) / d is equal to 1.
theorem
Finset.Int.gcd_div_id_eq_one
{s : Finset ℤ}
{x : ℤ}
(hx : x ∈ s)
(hnz : x ≠ 0)
:
(Finset.gcd s fun (b : ℤ) => b / Finset.gcd s id) = 1
theorem
Finset.Polynomial.gcd_div_eq_one
{K : Type u_1}
[Field K]
{β : Type u_2}
{f : β → Polynomial K}
(s : Finset β)
{x : β}
(hx : x ∈ s)
(hfz : f x ≠ 0)
:
(Finset.gcd s fun (b : β) => f b / Finset.gcd s f) = 1
Given a nonempty Finset s and a function f from s to K[X], if d = s.gcd f,
then the gcd of (f i) / d is equal to 1.
theorem
Finset.Polynomial.gcd_div_id_eq_one
{K : Type u_1}
[Field K]
{s : Finset (Polynomial K)}
{x : Polynomial K}
(hx : x ∈ s)
(hnz : x ≠ 0)
:
(Finset.gcd s fun (b : Polynomial K) => b / Finset.gcd s id) = 1