The category of finitely generated modules over a ring #
This introduces FGModuleCat R, the category of finitely generated modules over a ring R.
It is implemented as a full subcategory on a subtype of ModuleCat R.
When K is a field,
FGModuleCatCat K is the category of finite dimensional vector spaces over K.
We first create the instance as a preadditive category.
When R is commutative we then give the structure as an R-linear monoidal category.
When R is a field we give it the structure of a closed monoidal category
and then as a right-rigid monoidal category.
Future work #
- Show that
FGModuleCat Ris abelian whenRis (left)-noetherian.
Define FGModuleCat as the subtype of ModuleCat.{u} R of finitely generated modules.
Equations
- FGModuleCat R = CategoryTheory.FullSubcategory fun (V : ModuleCat R) => Module.Finite R ↑V
Instances For
Equations
- instCoeSortFGModuleCatType = { coe := FGModuleCat.carrier }
Equations
- instAddCommGroupCarrier M = let_fun this := inferInstance; this
Equations
- instModuleCarrierToSemiringToAddCommMonoidInstAddCommGroupCarrier M = let_fun this := inferInstance; this
Equations
- instFunLikeHomFGModuleCatToQuiverToCategoryStructInstLargeCategoryFGModuleCatCarrier = LinearMap.instFunLike
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- FGModuleCat.instInhabitedFGModuleCat R = { default := { obj := ModuleCat.of R R, property := ⋯ } }
Lift an unbundled finitely generated module to FGModuleCat R.
Equations
- FGModuleCat.of R V = { obj := ModuleCat.of R V, property := ⋯ }
Instances For
Equations
- ⋯ = ⋯
Equations
- One or more equations did not get rendered due to their size.
Converts and isomorphism in the category FGModuleCat R to
a LinearEquiv between the underlying modules.
Equations
- FGModuleCat.isoToLinearEquiv i = CategoryTheory.Iso.toLinearEquiv ((CategoryTheory.forget₂ (FGModuleCat R) (ModuleCat R)).mapIso i)
Instances For
Converts a LinearEquiv to an isomorphism in the category FGModuleCat R.
Equations
- LinearEquiv.toFGModuleCatIso e = { hom := ↑e, inv := ↑(LinearEquiv.symm e), hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
Equations
- ⋯ = ⋯
Equations
Equations
- ⋯ = ⋯
The forgetful functor FGModuleCat R ⥤ Module R as a monoidal functor.
Equations
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- One or more equations did not get rendered due to their size.
The dual module is the dual in the rigid monoidal category FGModuleCat K.
Equations
- FGModuleCat.FGModuleCatDual K V = { obj := ModuleCat.of K (Module.Dual K ↑V), property := ⋯ }
Instances For
The coevaluation map is defined in LinearAlgebra.coevaluation.
Equations
Instances For
The evaluation morphism is given by the contraction map.
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
Equations
- FGModuleCat.rightRigidCategory K = CategoryTheory.RightRigidCategory.mk